Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.567
Filtrar
1.
Mol Biol Rep ; 51(1): 547, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642187

RESUMO

BACKGROUND: Yeast biosynthesizes fusel alcohols in fermentation through amino acid catabolism via the Ehrlich pathway. ARO8 and ARO9 genes are involved in the first step of the Ehrlich pathway, while ADH2 and ADH5 genes are involved in the last step. In this study, we describe RT-qPCR methods to determine the gene expression level of genes (ARO8, ARO9, ADH2, ADH5) found in Saccharomyces cerevisiae (Sc) and Metschnikowia pulcherrima (Mp) strains growth pasteurized white grape juice. METHODS AND RESULTS: We used RNA extraction and cDNA synthesis protocols. The RT-qPCR efficiency of primer pairs was evaluated by generating a standard curve through serial dilution of yeast-derived cDNA. Method performance criteria were determined for each RT-qPCR assay. Then, we evaluated the gene expression levels of the four genes in all samples. RNA extraction and cDNA synthesis from yeast samples demonstrated the method's capability to generate high-yield, high-purity nucleic acids, supporting further RT-qPCR analysis. The highest normalized gene expression levels of ARO8 and ARO9 were observed in SC1, SC4, and SC5 samples. No significant difference in ADH2 gene expression among Mp strains was observed during the examination of ADH2 and ADH5 genes (p < 0.05). We observed no expression of the ADH5 gene in Mp strains except MP6 strain. The expression of ADH2 and ADH5 genes was higher in Sc strains compared to Mp strains. CONCLUSIONS: The results suggest that the proposed RT-qPCR methods can measure gene expression of ARO8, ARO9, ADH2, and ADH5 in Sc and Mp strains growing in pasteurized white grape juice.


Assuntos
Metschnikowia , Saccharomyces cerevisiae , Vitis , Saccharomyces cerevisiae/metabolismo , Vitis/genética , Vitis/metabolismo , DNA Complementar/metabolismo , Transaminases/genética , Fermentação , RNA/metabolismo
2.
Sci Rep ; 14(1): 7683, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561502

RESUMO

Helicobacter pylori (H. pylori), known for causing gastric inflammation, gastritis and gastric cancer, prompted our study to investigate the differential expression of cytokines in gastric tissues, which is crucial for understanding H. pylori infection and its potential progression to gastric cancer. Focusing on Il-1ß, IL-6, IL-8, IL-12, IL-18, and TNF-α, we analysed gene and protein levels to differentiate between H. pylori-infected and non-infected gastritis. We utilised real-time quantitative polymerase chain reaction (RT-qPCR) for gene quantification, immunohistochemical staining, and ELISA for protein measurement. Gastric samples from patients with gastritis were divided into three groups: (1) non-gastritis (N-group) group, (2) gastritis without H. pylori infection (G-group), and (3) gastritis with H. pylori infection (GH-group), each consisting of 8 samples. Our findings revealed a statistically significant variation in cytokine expression. Generally, cytokine levels were higher in gastritis, but in H. pylori-infected gastritis, IL-1ß, IL-6, and IL-8 levels were lower compared to H. pylori-independent gastritis, while IL-12, IL-18, and TNF-α levels were higher. This distinct cytokine expression pattern in H. pylori-infected gastritis underscores a unique inflammatory response, providing deeper insights into its pathogenesis.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Helicobacter , Neoplasias Gástricas , Humanos , Citocinas/metabolismo , Helicobacter pylori/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Helicobacter/metabolismo , Interleucina-8/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Gastrite/patologia , Interleucina-12/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Infecções por Helicobacter/genética , Infecções por Helicobacter/metabolismo , Mucosa Gástrica/metabolismo
3.
Prostate ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38571290

RESUMO

INTRODUCTION: We describe the development of a molecular assay from publicly available tumor tissue mRNA databases using machine learning and present preliminary evidence of functionality as a diagnostic and monitoring tool for prostate cancer (PCa) in whole blood. MATERIALS AND METHODS: We assessed 1055 PCas (public microarray data sets) to identify putative mRNA biomarkers. Specificity was confirmed against 32 different solid and hematological cancers from The Cancer Genome Atlas (n = 10,990). This defined a 27-gene panel which was validated by qPCR in 50 histologically confirmed PCa surgical specimens and matched blood. An ensemble classifier (Random Forest, Support Vector Machines, XGBoost) was trained in age-matched PCas (n = 294), and in 72 controls and 64 BPH. Classifier performance was validated in two independent sets (n = 263 PCas; n = 99 controls). We assessed the panel as a postoperative disease monitor in a radical prostatectomy cohort (RPC: n = 47). RESULTS: A PCa-specific 27-gene panel was identified. Matched blood and tumor gene expression levels were concordant (r = 0.72, p < 0.0001). The ensemble classifier ("PROSTest") was scaled 0%-100% and the industry-standard operating point of ≥50% used to define a PCa. Using this, the PROSTest exhibited an 85% sensitivity and 95% specificity for PCa versus controls. In two independent sets, the metrics were 92%-95% sensitivity and 100% specificity. In the RPCs (n = 47), PROSTest scores decreased from 72% ± 7% to 33% ± 16% (p < 0.0001, Mann-Whitney test). PROSTest was 26% ± 8% in 37 with normal postoperative PSA levels (<0.1 ng/mL). In 10 with elevated postoperative PSA, PROSTest was 60% ± 4%. CONCLUSION: A 27-gene whole blood signature for PCa is concordant with tissue mRNA levels. Measuring blood expression provides a minimally invasive genomic tool that may facilitate prostate cancer management.

4.
Proc Biol Sci ; 291(2020): 20232946, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38565156

RESUMO

Telomere length (TL) is a biomarker hypothesized to capture evolutionarily and ecologically important physiological costs of reproduction, infection and immunity. Few studies have estimated the relationships among infection status, immunity, TL and fitness in natural systems. The hypothesis that short telomeres predict reduced survival because they reflect costly consequences of infection and immune investment remains largely untested. Using longitudinal data from a free-living Soay sheep population, we tested whether leucocyte TL was predicted by infection with nematode parasites and antibody levels against those parasites. Helminth parasite burdens were positively associated with leucocyte TL in both lambs and adults, which is not consistent with TL reflecting infection costs. We found no association between TL and helminth-specific IgG levels in either young or old individuals which suggests TL does not reflect costs of an activated immune response or immunosenescence. Furthermore, we found no support for TL acting as a mediator of trade-offs between infection, immunity and subsequent survival in the wild. Our results suggest that while variation in TL could reflect short-term variation in resource investment or environmental conditions, it does not capture costs of infection and immunity, nor does it behave like a marker of an individual's helminth-specific antibody immune response.


Assuntos
Helmintos , Carneiro Doméstico , Animais , Ovinos , Encurtamento do Telômero , Reprodução , Telômero
5.
Appl Microbiol Biotechnol ; 108(1): 284, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573322

RESUMO

SELEX (Systematic Evolution of Ligands by Exponential enrichment) processes aim on the evolution of high-affinity aptamers as binding entities in diagnostics and biosensing. Aptamers can represent game-changers as constituents of diagnostic assays for the management of instantly occurring infectious diseases or other health threats. Without in-process quality control measures SELEX suffers from low overall success rates. We present a quantitative PCR method for fast and easy quantification of aptamers bound to their targets. Simultaneous determination of melting temperatures (Tm) of each SELEX round delivers information on the evolutionary success via the correlation of increasing GC content and Tm alone with a round-wise increase of aptamer affinity to the respective target. Based on nine successful and published previous SELEX processes, in which the evolution/selection of aptamer affinity/specificity was demonstrated, we here show the functionality of the IMPATIENT-qPCR for polyclonal aptamer libraries and resulting individual aptamers. Based on the ease of this new evolution quality control, we hope to introduce it as a valuable tool to accelerate SELEX processes in general. IMPATIENT-qPCR SELEX success monitoring. Selection and evolution of high-affinity aptamers using SELEX technology with direct aptamer evolution monitoring using melting curve shifting analyses to higher Tm by quantitative PCR with fluorescence dye SYBR Green I. KEY POINTS: • Fast and easy analysis. • Universal applicability shown for a series of real successful projects.


Assuntos
Bioensaio , Oligonucleotídeos , Controle de Qualidade , Temperatura
6.
Biochem Genet ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581475

RESUMO

Spinal muscular atrophy (SMA) is a neuromuscular disorder with an autosomal recessive inheritance pattern. Patients with severe symptoms may suffer respiratory failure, leading to death. The homozygous deletion of exon 7 in the SMN1 gene accounts for nearly 95% of all cases. Population carrier screening for SMA and prenatal diagnosis by amniocentesis for high-risk couples can assist in identifying the risk of fetal disease. We provided the SMA carrier screening process to 55,447 pregnant women in Yancheng from October 2020 to December 2022. Among them, 8185 participated in this process, with a participation rate of around 14.76% (95% CI 14.47-15.06%). Quantitative real-time polymerase chain reaction (qPCR) was used to detect deletions of SMN1 exons 7 and 8 (E7, E8) in screened pregnant women. 127 were identified as carriers (111 cases of E7 and E8 heterozygous deletions, 15 cases of E7 heterozygous deletions, and 1 case of E7 heterozygous deletions and E8 homozygous deletions), resulting in a carrying rate of around 1.55% (95% CI 1.30-1.84%). After genetic counseling, 114 spouses of pregnant women who tested positive underwent SMA carrier screening; three of them were screened as SMA carriers. Multiplexed ligation-dependent probe amplification (MLPA) was used for the prenatal diagnosis of the fetuses of high-risk couples. Two of them exhibited two copies of SMN1 exon 7 (normal), and the pregnancy was continued; one exhibited no copies of SMN1 exon 7 and exon 8 (SMA patient), and the pregnancy was terminated. Analyzing SMN1 mutations in Yancheng and provide clinical evidence for SMA genetic counseling and birth defect prevention. Interventional prenatal diagnosis for high-risk families can promote informed reproductive selection and prepare for the fetus's early treatment.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38575379

RESUMO

OBJECTIVES: To elaborate the utility of multiplex quantitative polymerase chain reaction (multiplex qPCR) for the accurate diagnosis of severe respiratory tract infections (RTIs) in hospitalized children. METHODS: In two separate periods during 2022, 76 respiratory specimens (combined throat/nasopharyngeal swabs) were submitted for multiplex qPCR regarding 26 respiratory pathogens. The specimens were obtained from children with severe RTIs hospitalized in the Institute for Respiratory Diseases in Children, Skopje. RESULTS: Multiplex qPCR detected at least one respiratory pathogen in all examined specimens (76/76), with 83% (63/76) rate of co-infections. Considering that positive results are only the ones with Ct value below 28, the rates of detected pathogens and co-infections decrease to 75% and 22%, respectively. The most commonly detected pathogens during the spring period were Parainfluenza type 3 (PIV3) followed by Adenovirus (AdV) and Respiratory syncytial virus type B (RSVB) with frequency rate of 23%, 19% and 19%, respectively. During the autumn period, the most common were RSVB and Streptococcus pneumoniae with frequency rate of 31% and 17%, respectively. CONCLUSION: Multiplex qPCR is a powerful tool for diagnosing RTIs. Semi-quantification of the viral load by reporting Ct values added higher level of evidence for accurate diagnosis. Seasonal detection of the examined viruses was notable with higher prevalence of PIV3 in spring and RSVB in autumn period.


Assuntos
Coinfecção , Infecções Respiratórias , Criança , Humanos , Lactente , Reação em Cadeia da Polimerase Multiplex/métodos , Criança Hospitalizada , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/epidemiologia , Prevalência
8.
Molecules ; 29(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611811

RESUMO

Lactic acid bacteria (LAB) play an important role in the ripening of cheeses and contribute to the development of the desired profile of aroma and flavor compounds. Therefore, it is very important to monitor the dynamics of bacterial proliferation in order to obtain an accurate and reliable number of their cells at each stage of cheese ripening. This work aimed to identify and conduct a quantitative assessment of the selected species of autochthonous lactic acid bacteria from raw cow's milk cheese by the development of primers and probe pairs based on the uniqueness of the genetic determinants with which the target microorganisms can be identified. For that purpose, we applied real-time quantitative PCR (qPCR) protocols to quantify Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and Lactococcus lactis subsp. cremoris cells in cheese directly after production and over three-month and six-month ripening periods. While L. lactis subsp. cremoris shows good acidification ability and the ability to produce antimicrobial compounds, L. delbrueckii subsp. bulgaricus has good proteolytic ability and produces exo-polysaccharides, and S. thermophilus takes part in the formation of the diacetyl flavor compound by metabolizing citrate to develop aroma, they all play an important role in the cheese ripening. The proposed qPCR protocols are very sensitive and reliable methods for a precise enumeration of L. delbrueckii subsp. bulgaricus, S. thermophilus, and L. lactis subsp. cremoris in cheese samples.


Assuntos
Queijo , Lactobacillales , Lactobacillus delbrueckii , Lactococcus lactis , Lactococcus , Animais , Bovinos , Feminino , Lactobacillales/genética , Leite , Reação em Cadeia da Polimerase em Tempo Real , Lactobacillus delbrueckii/genética , Lactococcus lactis/genética
9.
Animals (Basel) ; 14(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612306

RESUMO

Garlic oil (GO) and cinnamaldehyde (CIN) have shown potential to modify rumen fermentation. The aim of this study was to assess the effects of GO and CIN on rumen fermentation, microbial protein synthesis (MPS), and microbial populations in Rusitec fermenters fed a mixed diet (50:50 forage/concentrate), as well as whether these effects were maintained over time. Six fermenters were used in two 15-day incubation runs. Within each run, two fermenters received no additive, 180 mg/L of GO, or 180 mg/L of CIN. Rumen fermentation parameters were assessed in two periods (P1 and P2), and microbial populations were studied after each of these periods. Garlic oil reduced the acetate/propionate ratio and methane production (p < 0.001) in P1 and P2 and decreased protozoal DNA concentration and the relative abundance of fungi and archaea after P1 (p < 0.05). Cinnamaldehyde increased bacterial diversity (p < 0.01) and modified the structure of bacterial communities after P1, decreased bacterial DNA concentration after P2 (p < 0.05), and increased MPS (p < 0.001). The results of this study indicate that 180 mg/L of GO and CIN promoted a more efficient rumen fermentation and increased the protein supply to the animal, respectively, although an apparent adaptive response of microbial populations to GO was observed.

10.
Int J Mol Sci ; 25(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38612418

RESUMO

Non-small-cell lung cancer (NSCLC) poses a challenge due to its heterogeneity, necessitating precise histopathological subtyping and prognostication for optimal treatment decision-making. Molecular markers emerge as a potential solution, overcoming the limitations of conventional methods and supporting the diagnostic-therapeutic interventions. In this study, we validated the expression of six genes (MIR205HG, KRT5, KRT6A, KRT6C, SERPINB5, and DSG3), previously identified within a 53-gene signature developed by our team, utilizing gene expression microarray technology. Real-time PCR on 140 thoroughly characterized early-stage NSCLC samples revealed substantial upregulation of all six genes in squamous cell carcinoma (SCC) compared to adenocarcinoma (ADC), regardless of clinical factors. The decision boundaries of the logistic regression model demonstrated effective separation of the relative expression levels between SCC and ADC for most genes, excluding KRT6C. Logistic regression and gradient boosting decision tree classifiers, incorporating all six validated genes, exhibited notable performance (AUC: 0.8930 and 0.8909, respectively) in distinguishing NSCLC subtypes. Nevertheless, our investigation revealed that the gene expression profiles failed to yield predictive value regarding the progression of early-stage NSCLC. Our molecular diagnostic models manifest the potential for an exhaustive molecular characterization of NSCLC, subsequently informing personalized treatment decisions and elevating the standards of clinical management and prognosis for patients.


Assuntos
Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Diagnóstico Diferencial , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia
11.
Gut Pathog ; 16(1): 22, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600552

RESUMO

Malnourished children are at higher risk of mortality and morbidity following diarrheal illness and certain enteropathogens have been associated with malnutrition in children. Very few studies have comprehensively looked at the etiology of diarrhea in malnourished children and most have used conventional diagnostic methods with suboptimal sensitivity. We used a highly sensitive molecular approach against a broad range of pathogens causing diarrhea and examined their association with malnutrition. In addition, we looked at the pathogen diversity of pediatric diarrhea, three years after the nationwide rotavirus vaccine introduction to understand the evolving landscape of pathogens, which is crucial for planning strategies to further reduce the diarrhea burden. Clinical details and diarrheal stool samples were collected from hospitalized children aged < 5 years from three sentinel sites in India for a period of one year. The samples were tested by qPCR for 16 established causes of diarrhea using TaqMan Array Cards. A total of 772 children were enrolled, from whom 482 (62.4%) stool specimens were tested. No specific pathogen was associated with diarrhea among children with acute or chronic malnutrition compared to those with better nutritional status. Overall, adenovirus was the leading pathogen (attributable fraction (AF) 16.9%; 95% CI 14.1 to 19.2) followed by rotavirus (AF 12.6%; 95% CI 11.8 to 13.1) and Shigella (AF 10.9%; 95% CI 8.4 to 16.4). The majority of diarrhea requiring hospitalization in children aged < 2 years could be attributed to viruses, while Shigella was the most common pathogen among children aged > 2 years. These data on the prevalence and epidemiology of enteropathogens identified potential pathogens for public health interventions.

12.
Parasit Vectors ; 17(1): 182, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600589

RESUMO

BACKGROUND: Anopheles sacharovi, a member of the Anopheles maculipennis complex, was a historical malaria vector in Italy, no longer found since the last report at the end of 1960s. In September 2022, within the Surveillance Project for the residual anophelism, a single specimen of An. maculipennis sensu lato collected in Lecce municipality (Apulia region) was molecularly identified as An. sacharovi. This record led to implement a targeted entomological survey in September 2023. METHODS: Investigation was conducted in the areas around the first discovery, focusing on animal farms, riding stables and potential breeding sites. Adult and immature mosquitoes were collected, using active search or traps, in several natural and rural sites. Mosquitoes belonging to An. maculipennis complex were identified morphologically and molecularly by a home-made routine quantitative polymerase chain reaction (qPCR) assay, developed specifically for the rapid identification of An. labranchiae, and, when necessary, by amplification and sequencing of the ITS-2 molecular marker. RESULTS: Out of the 11 sites investigated, 6 were positive for Anopheles presence. All 20 An. maculipennis s.l. (7 adults, 10 larvae and 3 pupae) collected in the areas were identified as An. sacharovi by ITS-2 sequencing. CONCLUSIONS: The discovery of An. sacharovi, considered to have disappeared from Italy for over 50 years, has a strong health relevance and impact, highlighting an increase in the receptivity of the southern areas. As imported malaria cases in European countries are reported every year, the risk of Plasmodium introduction by gametocyte carriers among travellers from endemic countries should be taken into greater consideration. Our findings allow rethinking and building new models for the prediction and expansion of introduced malaria. Furthermore, to prevent the risk of reintroduction of the disease, the need to strengthen the surveillance of residual anophelism throughout the South should be considered.


Assuntos
Anopheles , Malária , Animais , Malária/epidemiologia , Anopheles/genética , Mosquitos Vetores , Itália/epidemiologia , Europa (Continente)
13.
Front Microbiol ; 15: 1379194, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605711

RESUMO

Wastewater-based epidemiology (WBE) has become a valuable tool for monitoring the prevalence of SARS-CoV-2 on university campuses. However, concerns about effectiveness of raw sewage as a COVID-19 early warning system still exist, and it's not clear how useful normalization by simultaneous comparison of Pepper Mild Mottle Virus (PMMoV) is in addressing variations resulting from fecal discharge dilution. This study aims to contribute insights into these aspects by conducting an academic-year field trial at the student residences on the University of Tennessee, Knoxville campus, raw sewage. This was done to investigate the correlations between SARS-CoV-2 RNA load, both with and without PMMoV normalization, and various parameters, including active COVID-19 cases, self-isolations, and their combination among all student residents. Significant positive correlations between SARS-CoV-2 RNA load a week prior, during the monitoring week, and the subsequent week with active cases. Despite these correlations, normalization by PMMoV does not enhance these associations. These findings suggest the potential utility of SARS-CoV-2 RNA load as an early warning indicator and provide valuable insights into the application and limitations of WBE for COVID-19 surveillance specifically within the context of raw sewage on university campuses.

14.
JBMR Plus ; 8(5): ziae035, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38606148

RESUMO

MicroRNAs are involved in post-transcriptional regulation of gene expression. Due to their regulatory role, microRNAs are differently expressed during specific conditions in healthy and diseased individuals, so microRNAs circulating in the blood could be used as diagnostic and prognostic biomarkers for various diseases and conditions. We want to investigate the variability of circulating microRNAs and bone turnover markers in weekly time intervals in older women. In a single-site longitudinal study, a panel of 19 bone-related miRNAs was measured using the osteomiR RT-qPCR assay in serum samples of 35 postmenopausal women divided into 3 groups: healthy controls (n = 12), low BMD (n = 14), and vertebral fractures (n = 9). Blood samples for measurement of CTX, PINP, OC, and bone ALP were collected once per week for 8 weeks at 9:00 AM after overnight fasting. Serum samples from all participants were analyzed for 19 microRNA bone biomarkers and 4 bone turnover markers over 8 weeks. We analyzed the data using a mixed model analysis of variance and found no significant changes between week-by-week time points in any of the groups. To estimate intraindividual variability between weekly time points, we have calculated the median coefficient of variation (CV). This was between 28.4% and 80.2% for microRNA, with an assay CV of 21.3%. It was between 8.5% and 15.6% for bone turnover markers, with an assay CV of 3.5% to 6.5%. The intraindividual variability was similar between groups. Circulating microRNAs measured in serum had a higher weekly intraindividual variability than bone turnover markers due in part to a higher assay CV.

15.
Plant Pathol J ; 40(2): 139-150, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606444

RESUMO

Huanglongbing (HLB) is a disease caused by the phloem- limited Candidatus Liberibacter asiaticus (CLas) that affects the citrus industry worldwide. To date, only indirect strategies have been implemented to eradicate HLB. Included among these is the population control of the psyllid vector (Diaphorina citri), which usually provides inconsistent results. Even though strategies for direct CLas suppression seem a priori more promising, only a handful of reports have been focused on a confrontation of the pathogen. Recent developments in polymer chemistry have allowed the design of polycationic self-assembled block copolymers with outstanding antibacterial capabilities. Here, we report the use of polymeric nano-sized bactericide particles (PNB) to control CLas directly in the phloem vasculature. The field experiments were performed in Rioverde, San Luis Potosí, and is one of the most important citrusproducing regions in Mexico. An average 52% reduction in the bacterial population was produced when PNB was injected directly into the trunk of 20 infected trees, although, in some cases, reduction levels reached 97%. These results position PNB as a novel and promising nanotechnological tool for citrus crop protection against CLas and other related pathogens.

16.
Environ Int ; 186: 108654, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621322

RESUMO

Investigating the occurrence of antibiotic-resistance genes (ARGs) in sedimentary archives provides opportunities for reconstructing the distribution and dissemination of historical (i.e., non-anthropogenic origin) ARGs. Although ARGs in freshwater environments have attracted great attention, historical variations in the diversity and abundance of ARGs over centuries to millennia remain largely unknown. In this study, we investigated the vertical change patterns of bacterial communities, ARGs and mobile genetic elements (MGEs) found in sediments of Lake Chenghai spanning the past 600 years. Within resistome preserved in sediments, 177 ARGs subtypes were found with aminoglycosides and multidrug resistance being the most abundant. The ARG abundance in the upper sediment layers (equivalent to the post-antibiotic era since the 1940s) was lower than those during the pre-antibiotic era, whereas the ARG diversity was higher during the post-antibiotic era, possibly because human-induced lake eutrophication over the recent decades facilitated the spread and proliferation of drug-resistant bacteria. Statistical analysis suggested that MGEs abundance and the bacterial community structure were significantly correlated with the abundance and diversity of ARGs, suggesting that the occurrence and distribution of ARGs may be transferred between different bacteria by MGEs. Our results provide new perspectives on the natural history of ARGs in freshwater environments and are essential for understanding the temporal dynamics and dissemination of ARGs.


Assuntos
Eutrofização , Sedimentos Geológicos , Lagos , Lagos/microbiologia , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Bactérias/genética , Bactérias/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Antibacterianos/análise , Antibacterianos/farmacologia , Genes Bacterianos , China , Farmacorresistência Bacteriana/genética
17.
Physiol Mol Biol Plants ; 30(2): 249-267, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38623163

RESUMO

Currently, salinization is impacting more than 50% of arable land, posing a significant challenge to agriculture globally. Salt causes osmotic and ionic stress, determining cell dehydration, ion homeostasis, and metabolic process alteration, thus negatively influencing plant development. A promising sustainable approach to improve plant tolerance to salinity is the use of plant growth-promoting bacteria (PGPB). This work aimed to characterize two bacterial strains, that have been isolated from pea root nodules, initially called PG1 and PG2, and assess their impact on growth, physiological, biochemical, and molecular parameters in three pea genotypes (Merveille de Kelvedon, Lincoln, Meraviglia d'Italia) under salinity. Bacterial strains were molecularly identified, and characterized by in vitro assays to evaluate the plant growth promoting abilities. Both strains were identified as Erwinia sp., demonstrating in vitro biosynthesis of IAA, ACC deaminase activity, as well as the capacity to grow in presence of NaCl and PEG. Considering the inoculation of plants, pea biometric parameters were unaffected by the presence of the bacteria, independently by the considered genotype. Conversely, the three pea genotypes differed in the regulation of antioxidant genes coding for catalase (PsCAT) and superoxide dismutase (PsSOD). The highest proline levels (212.88 µmol g-1) were detected in salt-stressed Lincoln plants inoculated with PG1, along with the up-regulation of PsSOD and PsCAT. Conversely, PG2 inoculation resulted in the lowest proline levels that were observed in Lincoln and Meraviglia d'Italia (35.39 and 23.67 µmol g-1, respectively). Overall, this study highlights the potential of these two strains as beneficial plant growth-promoting bacteria in saline environments, showing that their inoculation modulates responses in pea plants, affecting antioxidant gene expression and proline accumulation. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01419-8.

18.
Sci Rep ; 14(1): 8816, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627472

RESUMO

The diagnostic assays currently used to detect Shigella spp. (Shigella) and enterotoxigenic Escherichia coli (ETEC) are complex or elaborate which make them difficult to apply in resource poor settings where these diseases are endemic. The simple and rapid nucleic acid amplification-based assay "Rapid LAMP-based Diagnostic Test (RLDT)" was evaluated to detect Shigella spp (Shigella) and enterotoxigenic Escherichia coli (ETEC) and determine the epidemiology of these pathogens in Kolkata, India. Stool samples (n = 405) from children under five years old with diarrhea seeking care at the hospitals were tested, and 85(21%) and 68(17%) by RLDT, 91(23%) and 58(14%) by quantitative PCR (qPCR) and 35(9%) and 15(4%) by culture, were positive for Shigella and ETEC, respectively. The RLDT showed almost perfect agreement with qPCR, Kappa 0.96 and 0.89; sensitivity 93% and 98%; specificity 100% and 97% for Shigella and ETEC, respectively. While RLDT detected additional 12% Shigella and 13% ETEC than culture, all culture positives for Shigella and ETEC except one each were also positive by the RLDT, sensitivity 97% and 93% respectively. RLDT is a simple, sensitive, and rapid assay that could be implemented with minimum training in the endemic regions to strengthen the disease surveillance system and rapid outbreak detection.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Shigella , Criança , Humanos , Pré-Escolar , Escherichia coli Enterotoxigênica/genética , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/epidemiologia , Testes de Diagnóstico Rápido , Shigella/genética , Diarreia/diagnóstico , Diarreia/epidemiologia
19.
Sci Total Environ ; 927: 172281, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588740

RESUMO

Metabarcoding has been widely accepted as a useful tool for biodiversity assessment based on eDNA. The method allows for the detection of entire groups of organisms in a single sample, making it particularly applicable in aquatic habitats. The high sensitivity of the molecular approaches is especially beneficial in detecting elusive and rare fish species, improving biodiversity assessments. Numerous biotic and abiotic factors that affect the persistence and availability of fish DNA in surface waters and therefore affecting species detectability, have been identified. However, little is known about the relationship between the total fish DNA concentration and the detectability of differential abundant species. In this study three controlled mock-community DNA samples (56 individual samples) were analyzed by (i) metabarcoding (MiSeq) of 12S rDNA (175 bp) and by (ii) total freshwater fish DNA quantification (via qPCR of 12S rDNA). We show that the fish DNA quantity affects the relative abundance of species-specific sequences and the detectability of rare species. In particular we found that samples with a concentration between 1000 pg/µL down to 10 pg/µL of total fish DNA revealed a stable relative frequency of DNA sequences obtained for a specific fish species, as well as a low variability between replicates. Additionally, we observed that even in complex mock-community DNA samples, a total fish DNA concentration of 23 pg/µL was sufficient to reliably detect all species in every replicate, including three rare species with proportions of ≤0.5 %. We also found that the DNA barcode similarity between species can affect detectability, if evenness is low. Our data suggest that the total DNA concentration of fish is an important factor to consider when analyzing and interpreting relative sequence abundance data. Therefore, the workflow proposed here will contribute to an ecologically and economically efficient application of metabarcoding in fish biodiversity assessment.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Peixes , Água Doce , Animais , Peixes/genética , Monitoramento Ambiental/métodos , DNA/análise
20.
J Virol Methods ; 327: 114941, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38599248

RESUMO

Emerging infectious diseases are a threat that contributes to the decline of global chelonian species. Herpesviruses are among the most impactful pathogens described in chelonians and are frequently associated with a range of presentations across hosts with the potential for severe morbidity and mortality. Trachemys herpesvirus 1 (TrHV1) has been reported in red-eared and yellow-bellied sliders (Trachemys scripta elegans and Trachemys scripta scripta, respectively) but is largely understudied. Invasive red-eared sliders may serve as a reservoir for transmission to sympatric native species. This study aimed to develop a sensitive and specific quantitative real-time PCR (qPCR) assay for the detection of TrHV1 DNA to aid in the characterization of the epidemiology of this virus in aquatic turtles. Two TaqMan-MGB FAM-dye labeled primer-probe sets were designed and evaluated using plasmid dilutions. The higher performing assay was specific for TrHV1 DNA and had a linear dynamic range of 1.0 × 107 to 1.0 × 101 copies per reaction with an R2 of 0.999, slope of -3.386, and efficiency of 97.39%. The limit of detection was 101 copies per reaction, and there was no loss of reaction efficiency in the presence of TrHV1-negative chelonian oral-cloacal DNA. Overall, the Trachemys herpesvirus 1 assay meets established criteria for acceptable qPCR assays and will be a valuable tool in characterizing the epidemiology of Trachemys herpesvirus 1 in chelonians.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...